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Aswers to Seminar 2 ECON4930 Tuesday 15 february 

1. Hveding’s conjecture: 
The drivers for price change in the aggregate model (figure 3.10, and related text) 
(basic model in Lecture 1,2, figure in Lecture 3): 
i) Lower constraint on the reservoir binding, i.e. emptying the reservoir 
Must start using the backward principle at time T, emptying is implied by the 
assumption of positive production in every period and no satiation, i.e. pt > 0 for all t. 

From the first –order conditions we then have 0T Tp    

ii) Going backwards it seems reasonable to introduce a possibility for a second period, 
t+1,of emptying the reservoir; we have a last cold winter spell before inflows are 
sufficient for matching current demand. From the first –order conditions we then have 
for periods t+1 and t (remember that in the aggregate model we alwys have prie equal 
to water value): 

1 2 1 10 ( 0)t t t tR           

Assume 1 0t   , then 2 1t t   . Typically, we have 1 2t t   .  Furtermore, if we 

assume 0t  , we then have 1 10 ( 0)t t t t tR          , i.e. the price in period t 

is the same price as in period t+1. 

iii) Assume threat of overflow in period s, but not in period s+1 or in period s-1. We 

then have the price from the future: 1 1 1s s tp      . Reservoir dynamics yield  

1 0 ( 0)s s s sR       . Typically we then have 0s   and 

1 1 1s s s s s s             

Multiple plants: 

Situation at t=T: all reservoirs must be emptied, we still assume positive period prices, 

from the first-order conditions we have 0( 1,.., )T iTp i N   . All the plants must 

have the same water values at period T due to electricity being a perfectly 
homogeneous good. 

Going backwards to period t+1:  Let us assume that pt+1>pt+2, is it then possible that 
plant i is not emptying its reservoir in period t+1 provided that it is physically possible 
to do so? If it is emptying its reservoir the first-order condition is: 

, 1 , 2 , 1 , 1 , 1 , 2 , 10 ( 0)i t i t i t i t i t i t i tR                   . But this is a contradiction 

both if is >0 and = 0,  with our asssumptions about the relationship between the 

prices, pt+1>pt+2. Therefore, the reservoir must be emptied. 

Going backwards to period s, and assume ps< ps+1. Is it then possible that reservoir i is 
not full in period s? In that case the first-order condition is 

, 1 , 10 ( 0)is i s is is is i sR            . We have by assumption that is =0. But then 

we have a contradiction both if isR > 0 and = 0, to the relationship between the prices, 
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i.e. reservoir i has to be full at the end of period s in order to benefit fully from the 
higher price in period s+1 by transferring the maximal amount of water. 

Notice that when we have a period with a threat of overflow, then we have 

, 1 , 0is i s i s      for all reservoirs and period s and s+1 prices being equal to the 

corresponding plant water values.This implies that all the individual reservoir limit  
shadow prices must be equal. One m3 more water measured in kwh (NB! Of crucial 
importance) adds the same amount to the objective function irrespective which dam 
we enlarge. 

Take any periods u, u+1 within a subperiod of periods when the prices are equal. Is it 
then possible that there is a threat of overflow at reservoir i? In that case we must have 

, 1 , , 1 ,0 ( 0)is i s i s is is i s i sR              . But since the period prices are equal, 

we must have , 0i s  . So it is possible to have a threat of overflow, but then the 

shadow price on the reservoir consraint must be zero. This also holds for emptying the 
reservor in such a period with equal prices: the water values must remain equal for the 
periods. This is the fundamental indeterminacy of utilisation of reservoirs within 
periods with the same price. 

All that matters for optimality is that the reservoirs are emptied at the same time when 
the prices change, and that we have threat of overflow at the same time when the price 
change. 

The electricity generation and the reservoir capacities can be added together  because 
the water values and shadow prices are all the same when the price changes. 

2. Multi-year reservoir 
A single aggregated system cannot be used to tell us when a multi-year reservoir will 
be utilised. A multi-year reservoir is so big that all water can be saved to the period 
with the highest price. For this period the aggregate model will be  correct if we use 
the maximal amount of water accumulated during the T periods and not the physical 
limit, but the aggregate model will not be correct if the multi-year reservoir is larger 
than marginal in the model. This means that adding inflows to this reservoir to the 
total inflow may in  principle lead to a different solution for all periods.  
My position now is that Hveding’s conjecture only holds if the reservoirs are small 
enough that all inflows for all periods cannot be transferred to the highest price period. 
So the aggreation problem remains even if we do not have a multi-year reservoir, but 
just a reservoir that is big enough for all inflows to tbe transferred to the highest price 
period. The point is that when all reservoirs go in step when prices change, then the 
water values and the shadow prices are equal for a time period, but for accumulating 
reservoirs the water value is equal to the price in the period the water is finally used 
for all periods before this period. Such cases cannot be revealed by the aggregate 
model. 
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3. Extra question 

The constraint for the reservoir for the terminal period T is T T T TR R R R     . 

Therefore, the new condition in the Lagrangian becomes ( )T T TR R   . The first-

order condition for the reservoir level at the end of period T becomes: 

0T T T T
T

L

R
   

     


. The water value in the terminal period becomes equal 

to the shadow price on the level of the terminal reservoir constraint, and it has to be 
binding because demand for electricity is not satiated. From the envelope theorem: 

(objectivefunction)
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T T
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R R
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. The more water we want to leave after T, the 

lower the value of the objective function becomes. 
 

4. The constraint for a period to: 
o o o ot t t tR R R R     . The new condition in the 

Lagrangian: ( )
o o ot t tR R   . Assuming now that the prices around to are equal (and 

for instance equal to the price at t+1 when the reservoir is emptied for the last time 
before the terminal period) the  first–order condition for the reservoir level for period 

to is 1 10 ( 0)
o o o o o o ot t t t t t tR              . When the new constraint in period 

to is binding then the price in period to typically becomes greater than the previous 
price. If before the constraint was introduced the prices where equal after period t+1, 
then we have a new higher price from period to and backwards to period 1. This cannot 
be optimal for the social planner! Since more water is available after period to the price 
level must be lower in the periods after than before the constraint until the reservoir is 
emptied in some  period before T, but this period may now be different from period 
t+1, and if so the terminal price may also be different. But the price will be the same if 
no more water is accumulated after the episode with emptying the reservoir. 
With the reservoir level constraint the condumers pay a higher price for all earlier 
periods and a lower price for later perids. It is as if the consumers are forced to pay an 
insurance premium. But in a deterministic world imposing such a constraint reduces 
the value of the objective function. 

 


